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Introduction

The method of partial wave expanzion has been adopted a number
of times in the theoretical investigation of the structure and
. ‘ , 1
properties of atoms and one- and two-electron diatomic molecules™.
The method consists of writing the wave function of the system in

the form (for a onc-elactron gvetem)

b= Z‘ o () T (con 8, ) 0

where Xm(m 9; 43\) are the surface harmonics. This has the
advantage that it affords a straightforward method of successive
approximation to the total wave function. In applications of this
method to diatomic systems the expansion (1) has been made about
some point in the molecular framework, such as the centre of charge.
One might expect that, for diatomic molecules a more rapidly
édnvergent partial wave expansion could be obtained by employing
prolate spheroidal coordinates, which provide a natural coordinate
system.

For the diatomic system AB in which the nuclei A and B

are separated by a distance R as shown in Figure 1,
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we define
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and ¢; is the angular coordinate of the point L about the

internuclear axis.

Application to the N-electron diatomic molecule

A space component of the total wave function for an N-electron

diatomic system may be written as

¥ = HZM}%M}QU;.. 3., R)
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where the summation is over all values of 1~ 277 N and
permissible values of My, Wy "TT @ i.e. \M;l\< Q.’. and

also we must have
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and

Also
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The expansion (2) is formally exact; however, in all practical
applications the series must be truncated. The number of terms
rétained in the truncated expansion will determine the degree of
approximation.

If the nuclear charges in the diatomic system are Za and Zb

the Hamiltonian may be written (using prolate spheroidal coordinates)
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where §(¢l\ is Ehe lesser and §(\>) the greater of E‘.. ‘and E_-)

We now wish to take the wave equation

Hy = E

multiply through by the product

yﬂ* ’V]_s ¢) ("\xt‘#\ ;j}(“lu, d’N) (53

and integrate over the ‘'angular' variables ‘Tl and ¢ . If this is




done for every product of the form (5) then a set of equations
describing the ?{Q,‘X(E.,i,‘ . ae ENI R) is obtained.
In the following we shall find it convenient to introduce the

rotation

q{{n"“} = %iql,ﬁz*' .- QN'.M‘,W\,_. . mN}
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Write the total Hamiltonian as

| A
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(c.f. equation (3))
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Multiply (6) by the product (5) and integrate over the variables
‘\‘L and ¢ for all of the electrons, making use of integrals
given by Livingstonz, speciél cases of which are given in the
appendix.

This gives
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A
ii) Congider one of the /f;_; terms multiplied by the product (5).

We have



YR LN T

- _8({_,—\;“‘ >i‘ +7L‘(_|)M (L-\M\\\')P B‘ Q)] Q [E(bﬂ

[T
fim} Lzo t=-\L

YOV YW Ve Yo N B

Integrating over the M , ¢ coordinates of all electrons but .
and J gives zero for all terms but Rk = >k UMy = M

(v =1\,2.... N ¢ ast L, ) Integrating over the coordinates

MNi > P and M ,p; gives

[0 (0 0 0 Y0 e
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where M+mi-ﬂi=0

and the C's are the Clebsch-Gordon coefficients: see, for

3
example, Rose .




Also
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Using these results the total /f';_j term is:
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iii) Multiplying the R.H.S. of (4) by (5) and integrating over

the N'S and (ﬁ's gives simply

E ¥lo)

(9)

Thus the final result is obtained by writing (7) + (8) = (9)

These rather cumbersome equations may be written in a more

compact form if we define
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Hence we obtain:
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for every product of the form (5).
. The equations (10) are a set of coupled differential equatiomns
which are equivalent to the Schrgdinger equation of the system,
equation (4). Thus the wave function and energy of the diatomic

system may be obtained by solving the differential equations (10)

for the functions \I'{QM} (E‘ ch e %N B Q>
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Example of the Hé+ Ion

Here we discuss briefly the application of the foregoing theory
to the simple one-electron problem of the Hé+ molecular ion, the
Schrgdinger equation of which is separable in prolate spheroidal
coordinates, and has been solved accurately by Bates, Ledsham and

4 !
Stewart and more recently and more extensively by Peeks.

The wave function can be written in the form (see (1))

b =Z \}}Qm (§.R37/qm(~1,<ﬁ) (11)

Q/M

. ¥
Multiplying the wave function by X (VL/ Cﬁ’) and integrating
gives, using the result (10), and restricting our interest to the

ground state where m = 0
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This set of equations replaces the original Schrgdinger equation,
so solutions of these equations will determine the wave function
and energy of the system. The accuracy of the results obtained is
determined by the point where the summation is truncated.

The exact ground state wave function for H2+ may be written as

\P - E(E)i‘/tﬂ,?) PQ(’Vl\) (13)
=0

where the JD(Q) ?> are constants and
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Comparing (13) with (l1) we see that

@'{& 30} = {i—f}\-}\é%@’ ?3 E (§> (14)

Using (12)’it is now possible to derive a condition which must be

satisfied by the f's .

=(
The equation for __ g) given in reference (3) is

(=0 9E + 229\.’% +(cr2Ry-F¥)T =0

where C is a separation constant. This equation is the same as
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So from (12) we have
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and from this we obtain

0.0 = 25 E 1 R0 G040
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Now

Qa(d) = Pa(3)3 ey (B) = Wan (&)

See, for example, Jahnke and Emde . Writing = 2 A0y \ 3-

and substituting into (15) we have
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R= o4l

Asi-?l,A%oo s so for this to be true for all values of

we require
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The equation (15) may also be used to derive a three-terms recursion
relation for the f£'s.

Using (15) we first form the sum

16
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Then we find that using the recurrence relation for <;l)~
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and the relationship
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Thus we have
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which gives
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+{1”)"‘3 EL L n(wﬂ} A =0
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It should also be noted here that the essential difference
between the partial wave expansion method and the 'usual' separation
treatment arises from the fact that in the latter approach the

", . 2 2 .
Schrodinger wave is multiplied through by the factor (g "ﬂ.> in
order to facilitate separation. If this is not done then we have

-
a term involving (22_ "11) which, when expanded, gives an infinite

series.
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APPENDIX

Some useful integrals for the foregoing theory are

" J_P_x_m\o\fv\ = 2Q3)
(=)

- J_Maq\ = - 2Q@,3)= (N2 R, (&)
(3+m)

3) f PQ("I)O\”\. = %Qq(ﬁ © { even

(E’ ‘)
| | | ”‘ = 0O i Q CRAA
) (%) J%{Md = 2Q: (%) ° Rese
= O v sad
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5) J\"\ ?’l("’op“(”\\o\q = 23 P B)Q.R) 1 dgn
(3-m~)

(6)

J‘ Pr(y) Poldan = UM POQR(E) Hhen

o J‘ B () dm = ("2 RRYQE(R)
| G
L<n

) J\ P:("\\ PQM("\\ dm = (“Dml R (}) Qun (EB 'X4n
(3*- ") 3

-\

for n + R even

= 0 : v +8 odd
9 J\ﬂp:\("l\ PQM("\\A'V\_ = (O"2P(3)Qn (£) 1 %¢w
S S et
n +x odd

= 0 t\+& even
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